Bibliography of climatological studies
of Precambrian glaciation

1960-64

Harland, W.B., 1964. Evidence of late Precambrian glaciation and its significance. In: Nairn, A.E.M. (ed.) Problems in Palaeoclimatology. Interscience, London, p. 119-149.

Harland, W.B., 1964. Critical evidence for a great infra-Cambrian glaciation. Geologische Rundschau 54, 45-61.

Eriksson, E., 1968. Air-ocean-icecap interactions in relation to climatic fluctuations and glaciation cycles. Meteorological Monographs 8, 68-92.

Budyko, M.I., 1969. The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611-619.

Sellers, W.D., 1969. A global climatic model based on the energy balance of the Earth­atmosphere system. Journal of Applied Meteorology 8, 392-400.


1970-79

Lindzen, R.S. & Farrell, B., 1977. Some realistic modifications of simple climate models. Journal of Atmospheric Sciences 34, 1487-1500.

Roberts, J.D., 1971. Late Precambrian glaciation: an anti-greenhouse effect? Nature 234, 216.

Wetherald, R.T. & Manabe, S., 1975. The effects of changing the Solar constant on the climate of a general circulation model. Journal of the Atmospheric Sciences 32, 2044-2059.

Williams, G.E., 1975. Late Precambrian glacial climate and the Earth’s obliquity. Geological Magazine 112, 441-544.


1980-89

Hambrey, M.J. & Harland, W.B., 1985. The Late Proterozoic glacial era. Palaeogeography, Palaeoclimatology, Palaeoecology 51, 255-272.

Marshall, H.G., Walker, J.C.G., & Kuhn, W.R., 1988. Long-term climate change and the geochemical cycle of carbon. Journal of Geophysical Research 93(D1), 791-801. 

North, G.R., Cahalan, R.F., & Coakley, J.A.Jr., 1981. Energy balance climate models. Reviews of Geophysics and Space Physics 19, 91-121.

Sheldon, R.P., 1984. Ice-ring origin of the Earth’s atmosphere and hydrosphere and Late Proterozoic­Cambrian hypothesis. Geological Survey of India Special Publication 17, 17-21


1990-99

Caldeira, K. & Kasting, J.F., 1992. Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature 359, 226-228.

Carver, J.H. & Vardavas, I.M., 1994. Precambrian glaciations and the evolution of the atmosphere. Annales Geophysicae 12, 674-682.

Crowley, T.J. & Baum, S.K., 1993. Effect of decreased solar luminosity on Late Precambrian ice extent. Journal of Geophysical Research 98, 16,723-16,732.

Hoffman, P.F., Schrag, D.P., Halverson, G.P., & Kaufman, J.A., 1998. Response: An early Snowball Earth? Science 282, 1645-1646.

Jenkins, G.S. & Frakes, L.A., 1998. GCM sensitivity test using increased rotation rate, reduced solar forcing and orography to examine low latitude glaciation in the Neoproterozoic. Geophysical Research Letters 25, 3525-3528.

Jenkins, G.S. & Scotese, C.R., 1998. An early Snowball Earth? Science 282, 1645.

Jenkins, G.S. & Smith, S.R., 1999. GCM simulations of Snowball Earth conditions during the late Proterozoic. Geophysical Research Letters 26, 2263-2266.

Kirschvink, J.L., 1992. Late Proterozoic low-latitude glaciation: the snowball Earth. In The Proterozoic Biosphere, Schopf, J.W. & Klein, C., eds., pp. 51-52, Cambridge University Press, Cambridge.

Oglesby, R.J. & Ogg, J.G., 1998. The effect of large fluctuations in obliquity on climates of the late Proterozoic. Palaeoclimates 2, 293-316.

Worseley, T.R. & Kidder, D.L., 1991. First-order coupling of paleogeography and CO2, with global surface temperature and its latitudinal contrast. Geology 19, 1161-1164.


2000

Chandler, M.A. & Sohl, L.E., 2000. Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. Journal of Geophysical Research 105, 20,737-20,756.

Hyde, W.T., Crowley, T.J., Baum, S.K. & Peltier, W.R., 2000. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405, 425-429.

Jenkins, G.S., 2000. Global climate model high-obliquity solutions to the ancient climate puzzles of the faint-young-Sun paradox and low-latitude Proterozoic glaciation. Journal of Geophysical Research 105, 7357-7370.

McKay, C.P., 2000. Thickness of tropical ice and photosynthesis on a snowball Earth. Geophysical Research Letters 27, 2153-2156.


2001

Baum, S.K. & Crowley, T.J., 2001. GCM response to Late Precambrian (~590 Ma) ice-covered continents. Geophysical Research Letters 28, 583-586.

Crowley, T.J., Hyde, W.T. & Peltier, W.R., 2001. CO2 levels required for deglaciation of the “Near-Snowball” Earth. Geophysical Research Letters 28, 283-286.

Poulsen, C.J., Pierrehumbert, R.T. & Jacob, R.L., 2001. Impact of ocean dynamics on the simulation of the Neoproterozoic “snowball Earth”. Geophysical Research Letters 28, 1575-1578.

Schrag, D.P. and Hoffman, P.F., 2001. Life, geology and snowball Earth. Nature 409, 306.


2002

Bendtsen, J. & Bjerrum, C.J., 2002. Vulnerability of climate on Earth to sudden changes in insolation. Geophysical Research Letters 29, 10.1029/2002GL014829.

Donnadieu, Y., Ramstein, G., Fluteau, F., Besse, J. & Meert, J., 2002. Is high obliquity a plausible cause for Neoproterozoic glaciations? Geophysical Research Letters 29, 10.1029/2002GL015902.

Fawcett, P.J. & Boslough, M.B.E., 2002. Climatic effects of an impact-induced equatorial debris ring. Journal of Geophysical Research 107, 10.1029/2001JD001230.

Pierrehumbert, R.T., 2002. The hydrologic cycle in deep-time climate problems. Nature 419, 191-198.

Poulsen, C.J., Jacob, R.L., Pierrehumbert, R.T. & Huynh, T.T., 2002. Testing paleogeographic controls on a Neoproterozoic snowball Earth. Geophysical Research Letters, 29, 10.1029/2001GL014352.

Schrag, D.P., Berner, R.A., Hoffman, P.F. & Halverson, G.P. 2002. On the initiation of a snowball Earth. Geophysics, Geochemistry, Geosystems 3, on-line 10.1029/2001GC000219.

Warren, S.G., Brandt, R.E., Grenfell, T.C. & McKay, C.P., 2002. Snowball Earth: Ice thickness on the tropical ocean. Journal of Geophysical Research 107, 10.1029/2001JC001123.


2003

Baum, S.K. & Crowley, T.J., 2003. The snow/ice instability as a mechanism for rapid climate change: a Neoproterozoic snowball Earth model example. Geophysical Research Letters 30, 10.1029/2003GL017333.

Donnadieu, Y., Fluteau, F., Ramstein, G., Ritz, C. & Besse, J., 2003. Is there a conflict between the Neoproterozoic glacial deposits and the snowball Earth interpretation: an improved understanding with numerical modeling. Earth and Planetary Science Letters 208, 101-112.

Goddéris, Y., Donnadieu, Y., Nédélec, A., Dupré, B., Dessert, C., Grard, A., Ramstein, G. & Francois, L.M., 2003. The Sturtian ‘snowball’ glaciation: fire and ice. Earth and Planetary Science Letters 211, 1-12.

Goodman, J. & Pierrehumbert. R.T., 2003. Glacial flow of floating marine ice in “Snowball Earth”. Journal of Geophysical Research 108, 10.1029/2002JC001471.

Levrard, B. & Laskar, J., 2003. Climate friction and the Earth’s obliquity. Geophysical Journal International 154, 970-990.

Lewis, J.P., Weaver, A.J., Johnston, S.T., & Eby, M., 2003. Neoproterozoic “snowball Earth”: Dynamic sea ice over a quiescent ocean. Paleoceanography 18, 10.1029/2003PA000296.

Poulsen, C.J., 2003. Absence of a runaway ice-albedo feedback in the Neoproterozoic. Geology 31, 473-476.

Pavlov, A.A., Hurtgen, M.T., Kasting, J.F., & Arthur, M.A., 2003. Methane-rich Proterozoic atmosphere? Geology 31, 87-90.

Ridgwell, A.J., Kennedy, M.J., & Caldeira, K., 2003. Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science 302, 859-862.

Tajika, E., 2003. Faint young Sun and the carbon cycle: implication for the Proterozoic global glaciations. Earth and Planetary Science Letters 214, 443-453.


2004

Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédélec, A., & Meert, J., 2004. A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature 428, 303-306.

Donnadieu, Y., Ramstein, G., Goddéris, Y., & Fluteau, F., 2004. Global tectonic setting and climate of the Late Neoproterozoic: a climate-geochemical coupled study. In: Jenkins, G.S., McMenamin, M.A.S., McKey, C.P., & Sohl, L. (eds.) The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical Monograph 146, American Geophysical Union, Washington, DC., p. 79-89.

Jenkins, G.S., 2004. A review of Neoproterozoic climate modeling studies. In: Jenkins, G.S., McMenamin, M.A.S., McKey, C.P., & Sohl, L. (eds.) The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical Monograph 146, American Geophysical Union, Washington, DC., p. 73-78.

Jenkins, G.S., 2004. High obliquity as an alternative hypothesis to early and late Proterozoic extreme climate conditions. In: Jenkins, G.S., McMenamin, M.A.S., McKey, C.P., and Sohl, L. (eds.) The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical Monograph 146, American Geophysical Union, Washington, DC., p. 183-192.

Lewis, J.P., Eby, M., Weaver, A.J., & Johnston, S.T., 2004. Global glaciation in the Neoproterozoic: reconciling previous modelling results. Geophysical Research Letters 31, L08201, doi:10:1029/2004GL019725.

McKay, C.P., 2004. Thin ice on the Snowball Earth. In: Jenkins, G.S., McMenamin, M.A.S., McKey, C.P., & Sohl, L. (eds.) The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical Monograph 146, American Geophysical Union, Washington, DC., p. 193-198.

Peltier, W.R., Tarasov, L., Vettoretti, G., & Solheim, L.P., 2004. Climate dynamics in deep time: modeling the “snowball bifurcation” and assessing the plausibility of its occurrence. In: Jenkins, G.S., McMenamin, M.A.S., McKey, C.P., & Sohl, L. (eds.) The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical Monograph 146, American Geophysical Union, Washington, DC., p. 107-124.

Pierrehumbert, R.T., 2004. High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature 429, 646-649.

Pollard, D. & Kasting, J.F., 2004. Climate-ice sheet simulations of Neoproterozoic glaciation before and after collapse to Snowball Earth. In: Jenkins, G.S., McMenamin, M.A.S., McKey, C.P., & Sohl, L. (eds.) The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical Monograph 146, American Geophysical Union, Washington, DC., p. 91-105.

Ridgwell, A. & Kennedy, M., 2004. Secular changes in the importance of neritic carbonate deposition as a control on the magnitude and stability of Neoproterozoic ice ages. In: Jenkins, G.S., McMenamin, M.A.S., McKey, C.P., & Sohl, L. (eds.) The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical Monograph 146, American Geophysical Union, Washington, DC., p. 55-72.

Tajika, E., 2004. Analysis of carbon cycle system during the Neoproterozoic: implications for Snowball Earth events. In: Jenkins, G.S., McMenamin, M.A.S., McKey, C.P., & Sohl, L. (eds.) The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical Monograph 146, American Geophysical Union, Washington, DC., p. 45-54.


2005

Kasting, J.F., 2005. Methane and climate during the Precambrian era. Precambrian Research 137, 119-129.

Pavlov, A.A., Toon, O.B., Pavlov, A.K., Bally, J., & Pollard, D., 2005. Passing through a giant molecular cloud: “Snowball” glaciations produced by interstellar dust. Geophysical Research Letters 32, L03705, 10.1029/2004GL021890

Pierrehumbert, R.T., 2005. Climate dynamics of a hard snowball Earth. Journal of Geophysical Research 110, D01111, 10.1029/2004JD005162

Pollard, D. & Kasting, J.F., 2005. Snowball Earth: a thin-ice solution with flowing glaciers. Journal of Geophysical Research 110, C07010, 10.1029/2004JC002525


2006

Goddéris, Y., Donnadieu, Y., Dessert, C., Dupré, B., Fluteau, F., François, L. M., Meert, J., Nédélec, A. & Ramstein, G. 2006 Coupled modeling of global carbon cycle and climate in the Neoproterozoic: links between Rodinia breakup and major glaciations. Comptes Rendus Geosciences, In Press, Available online 24 January 2006.

Goodman, J.C., 2006. Through thick and thin: Marine and meteoric ice in a “Snowball Earth” climate. Geophysical Research Letters 33, L16701, doi: 10.1029/2006GL026840.

Kasting, J.F. & Ono, S., 2006. Palaeoclimates: the first two billion years. Philosophical Transactions of the Royal Society, London, Series B 361, 917-919, doi: 1.1098/rstb.2006.1839.

Lewis, J.P., Weaver, A.J., & Eby, M., 2006. Deglaciating the snowball Earth: Sensitivity to surface albedo. Geophysical Research Letters 33, L23604, doi: 10.1029/2006GL027774.

Pollard, D. & Kasting, J.F., 2006. Reply to comment by Stephen G. Warren and Richard E. Brandt on "Snowball Earth: A thin-ice solution with flowing sea glaciers". Journal of Geophysical Research 111, C09017, doi: 10.1029/2006JC003488.

Warren, S.G. & Brandt, R.E., 2006. Comment on "Snowball Earth: A thin-ice solution from flowing sea glaciers" by David Pollard and James F. Kasting. Journal of Geophysical Research 111, C09016, doi: 10.1029/2005JC003411.