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Abstract

Thermal contraction cracking of permafrost produced sand-wedge polygons at sea level on the paleo-equator
during late Neoproterozoic glacial episodes. These sand wedges have been used as evidence for high (v 54‡) paleo-
obliquity of the Earth’s ecliptic, because cracks that form wedges are hypothesized to require deep seasonal cooling so
the depth of the stressed layer in the ground reaches v 1 m, similar to the measured depths of cracks that form
wedges. To test the counter hypothesis that equatorial cracks opened under a climate characterized by a strong
diurnal cycle and low mean annual temperature (snowball Earth conditions), we examine crack formation in frozen
ground subject to periodic temperature variations. We derive analytical expressions relating the Newtonian viscosity
to the potential crack depth, concluding that cracks will form only in frozen soils with viscosities greater thanV1014

Pa s. We also show numerical calculations of crack growth in frozen soils with stress- and temperature-dependent
rheologies and find that fractures may propagate to depths 3^25 times the depth of the thermally stressed layer in
equatorial permafrost during a snowball Earth because the mean annual temperature is low enough to keep the
ground cold and brittle to relatively great depths.
9 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The presence of sand-wedge polygons at the
paleo-equator led Williams [1^3] to suggest that
a higher obliquity of the Earth’s ecliptic relative

to the plane of the solar system (v 54‡ as com-
pared to 23.25 = 1.25‡ today) was required in the
Neoproterozoic both to drop mean annual tem-
perature below 0‡C and to increase seasonality at
the paleo-equator. The snowball Earth hypothesis
[4^6] was proposed as an alternative to high Earth
obliquity in an attempt to explain the association
of distinctive cap carbonate rocks [7^10] with low-
latitude glacial deposits. We use analytical and
numerical models of tensile stress and potential
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crack growth in frozen soil to test the hypothesis
that fractures which form sand wedges might have
occurred at the equator under snowball Earth cli-
mate conditions.

1.1. Modern sand wedges

On Earth and Mars today, polygonal fracture
networks caused by thermal contraction cracking
of frozen ground are found poleward of 17‡ lat-
itude [11^16]. At high latitudes on Earth, sand/ice
wedges are thought to form by the following gen-
eral process. First, when autumn begins, the 0.5^4
m thick active (seasonally frozen and thawed)
layer developed during the summer melt season
begins to freeze. Next, when over the course of
24^96 h the ¢rst major winter cold front passes
through, the already frozen ground contracts and
cracks form [17]. The cracks propagate to the
same depth that the cold wave penetrates, as
ground beneath this stressed layer remains rela-
tively warm and thermal stresses are easily dissi-
pated by viscous processes. The deepest cracks
form in mid-winter, when most or all of the active
layer is refrozen and the soil column becomes
continuously brittle to 10^1000 m depth, but
snowcover is not too thick to insulate the ground
from cold waves at the surface [18]. Wind-blown
sand/snow, segregation ice, or spring meltwater
¢lls the crack. Wedges tend to grow in subsequent
years because the sand or ice ¢lling the wedge has
a lower tensile strength than the heterogeneous
permafrost around it, causing new cracks to ex-
ploit existing wedges. However, in any given year,
only 8^75% of the existing sand/ice wedges crack
again and grow [18^20].
Although diurnal temperature variations may

be very large (10^30‡C) in tropical deserts, the
cold wave is brief (6 12 h) and only penetrates
17 cm into the relatively warm ground. Today,
only very shallow thermal contraction cracks re-
sult from daily temperature £uctuations, even
in the high-altitude periglacial environment of
Mount Kilimanjaro [21]. No Martian sand wedges
have been noted equatorward of 17‡, although
their development is considered possible by Mel-
lon [22], and the presence of equatorial ground ice
has been suggested by Lanagan et al. [23].

1.2. Neoproterozoic sand wedges

Sand-wedge polygons related to thermal con-
traction cracking of permafrost are reported
from Neoproterozoic successions in Australia
[24], Mauritania [25], Spitsbergen [26], Northern
Norway [27], Southern Norway [28], and Scotland
[29]. All of these sand wedges likely developed at
or near sea level, and the wedges of South Aus-
tralia are constrained by reliable paleomagnetic
data to have formed at 7þ637 degrees latitude [30^
32]. The wedges were ¢lled with sand, commonly
laminated vertically or parallel to crack margins,
and most of the wedges were developed in sand or
diamicton.

1.3. Snowball Earth conditions

During a snowball Earth, mean daily temper-
atures at the equator would be below 0‡C and the
air would be extremely dry [33]. On summer days,
when minor melting occurred at the ground sur-
face, soil temperatures would not rise above 0‡C
until all of the ground ice was melted [34]. What-
ever meltwater might be generated during a
summer day would either completely refreeze at
night or evaporate away. The presence of sand
wedges rather than ice wedges supports the latter
hypothesis, in which the upper soil was very dry
and thermal contraction cracks were never ¢lled
with meltwater. Because summer ground temper-
atures did not exceed 0‡C and liquid water was
transient, permafrost remained extremely brittle
throughout the year. In the winter, cracks initi-
ated in the upper 16 cm of permafrost may have
propagated to depths on the order of 1 m due to
the concentration of stresses at fracture tips and
the relatively easy fracture of brittle materials.
We develop a model of pre-fracture stress accu-

mulation and the resulting potential fracture
depth in permafrost to investigate the hypothesis
that large stresses associated with the diurnal tem-
perature cycle during a snowball Earth could have
been responsible for sand-wedge growth at the
equator. We drive the system with air tempera-
tures that vary sinusoidally at the ground surface
with amplitude of 10^25 K about a mean of 243^
253 K over a period of 21.9 = 0.4 h [35,36]. For
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reference, low-latitude terrestrial deserts com-
monly experience diurnal temperature variations
of 30 K [37] and the mean annual temperature
at sea level in the Dry Valleys, McMurdo Sound,
Antarctica is 253 K.

2. The model

2.1. Temperature

We are concerned with periodic temperature
variations of the form:

Tðz ¼ 0; tÞ ¼ vT sinðg tÞ ð1Þ

where T is the temperature, vT is the amplitude
of the temperature variation at the surface, g is
the angular frequency of the variation, and t is the
time. Temperature as a function of depth is (e.g.
[38]) :

Tðz; tÞ ¼ vT e3z
0
sinðg t3z0Þ ð2Þ

where zP is the dimensionless depth, normalized to
the depth of penetration of the temperature var-
iations (the ‘skin depth’) :

zg ¼
ffiffiffiffiffiffi
2U
g

r
ð3Þ

and U is the thermal di¡usivity. Note that zP=
z/zg is a phase lag associated with conduction of
the surface temperature signal to ¢nite depths.
The time derivative of temperature is then:

_TTðz; tÞ ¼ vTe3z
0
gcosðg t3z0Þ ð4Þ

2.2. Stress and strain rate

We follow Mellon [22] in treating frozen soil as
a Maxwell £uid, i.e. a spring and dashpot in se-
ries, representing the elastic and viscous compo-
nents of strain, Oeij and O

R

ij , respectively (Fig. 1). In
addition (like Mellon), we add a component of
strain due to the thermal expansion and contrac-
tion, OTij . Di¡erentiating with respect to time, we

arrive at an expression for the total strain rate _OO ij :

_OO ij ¼ _OO eij þ _OOTij þ _OO R

ij ð5Þ

Because the elastic response is instantaneous,
the elastic strain rate is related simply to the
rate of change of applied stress _cc ij :

_OO eij ¼
1þ X

E
_cc ij3

X

E
_cc kkN ij ð6Þ

where E is Young’s modulus, X is Poisson’s ratio,
and Nij is the Kronecker delta. We have neglected
higher-order terms involving the temperature de-
rivatives of material properties because they are
not signi¢cant.
The viscous strain rate is a complicated func-

tion of temperature and stress. However, under-
standing the creep behavior of frozen ground is
critical for determining whether thermal stress will
be relaxed viscously or will lead to cracking. In
Section 3, we study the behavior of the model
analytically, assuming a linear relationship be-
tween stress and strain rate. In Section 4, we de-
velop a theoretical model for the e¡ective vis-
cosity of frozen ground under cyclic loading
and apply it to the results of Section 3. And in
Section 5, we perform a numerical integration of
the model using non-linear viscosity laws. For
now, we employ a general power-law rheology
that can be described by the Weertman equation:

_OO R

ij ¼ signðsijÞ A0e3Q=RT MsijMn ð7Þ

where A0 is a constant related to the viscosity of
the material, Q is the activation energy, R is
the Rydberg gas constant, T is the absolute tem-
perature, n is of order one, and sij =cij3(1/3)ckk
is the deviatoric stress. Note that we have been
careful to de¢ne the sign of the viscosity term
such that it always acts to relieve the deviatoric
stress.

Fig. 1. Thermal stresses applied to a spring and dashpot in
series, after Mellon [22]. See Eq. 5.
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The thermal strain rate is related to the rate of
change of temperature, T< , through the thermal
expansivity, K, according to:

_OOTij ¼ K _TTN ij ð8Þ

where we have adopted the convention that ten-
sile stresses and strains are positive.
Combining these terms, we ¢nd that:

_OO ij ¼
1þ X

E
_cc ij3

X

E
_cc kkN ijþ

signðsijÞ A0e3Q=RT MsijMn þ K _TTN ij ð9Þ

As discussed by Mellon [22], if we assume hor-
izontal isotropy of material properties, the hor-
izontal stresses are equal in all directions
(c11 =c22 =c), and the total horizontal strain
rate O= O11 = O22 must vanish. Therefore, the hor-
izontal components of Eq. 9 reduce to:

_cc ¼ E� 3signðc ÞA0e3Q=RT j12j
n3K _TT

h i
ð10Þ

where

E� ¼ E
13X

ð11Þ

The factor of 1/2 in the power-law stress term is
introduced for consistency with experiment; lab-
oratory creep experiments generally derive the
material properties under uniaxial or triaxial
stress, whereas we are concerned with conditions
of plane stress with c33 = 0 [22].

2.3. Crack propagation

The stress ¢eld of a linear elastic half-space is
changed drastically by the presence of an isolated,
sharp crack. Assuming the walls of such a crack
to be stress-free, we can derive expressions for the
net stress in the solid (e.g. [39,40]). The presence
of the crack focuses tensile stresses around the
crack tip, actually leading to a stress singularity
at the tip itself (this is clearly unphysical, as plas-
ticity in the crack tip region negates the assump-
tion of linear elasticity locally). Extension of the
crack releases the accumulated elastic strain en-

ergy; the classical Gri⁄th energetic approach
seeks to balance this strain energy release rate
against a fracture resistance term owing to
changes in surface free energies and dissipative
e¡ects.
An equivalent treatment involves the use of a

crack edge intensity factor, K, which is a function
of the applied stress geometry and magnitude as
well as the material properties of the elastic me-
dium. The solution for an arbitrary symmetric
horizontal stress ¢eld c(z) is (e.g. [40]) :

K ¼ 2i
Z

ffiffiffi
b

p Z b

0

c ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffi
b23z2

p dz ð12Þ

where i is a geometric correction factor. For
straight edge cracks in a semi-in¢nite medium,
iv1.12

ffiffiffi
Z

p
.

Lachenbruch [39] found analytical solutions to
Eq. 12 for two simple loading geometries. The
¢rst is the crack stress intensity factor owing to
a tensile, horizontal stress �cc applied uniformly
from the surface (z=0) to a depth, a, less than
the crack depth, b. In that case:

K �cc ¼ 2i
Z

�cc
ffiffiffi
b

p
sin31

a
b

� �
ð13Þ

The second result of Lachenbruch that we ap-
ply here is for a stress that is linearly increasing
with depth. Speci¢cally, the contribution to the
crack edge stress intensity factor from gravity is
given by:

K b ¼ 3
2i
Z

bgb3=2 ð14Þ

where b is the density of the medium and g is the
gravitational acceleration. For the depth range
we consider below (9 3 m), Kb is small (9 0.17
MPa m1=2), and we will neglect its contribution
in the analytical treatment that follows (see
Fig. 2).

3. Analytical solutions

Because of the potential non-linearity of the
stress^strain rate relationship, we cannot solve
Eq. 10 analytically. However, if we linearize the
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viscosity, we can explore the basic behavior of the
system and identify the most critical parameters.
We argue below that this is a reasonable approx-
imation that may, in fact, come very close to real-
ity. We proceed by de¢ning an e¡ective linear
viscosity R :

R ¼ 1
A0
eQ=R

�TT 2n �cc 13n ð15Þ

where T· is a representative temperature and �cc is a
representative stress. This stress should not be
more than the yield stress of the material
(V0.5^2 MPa for ice) as these stresses are never
actually realized within the material. Note that
the values of A0, Q, and n will vary depending
on which creep mechanism is dominant in the
material under a set of stress, strain, strain rate,
and temperature conditions [41]. In Section 4.1,
we discuss speci¢c creep mechanisms and attempt
to de¢ne an appropriate e¡ective viscosity for fro-
zen ground.

3.1. Stress

With this simpli¢ed viscosity law, we can re-
write Eq. 10 as:

_cc ¼ E� 3
c

R

3K _TT
� 	

ð16Þ

Substituting Eq. 4 and rearranging, we ¢nd:

_cc þ 1
d c

c ¼ ca e3z
0
g cosðg t3z0Þ ð17Þ

where the stress relaxation time (or Maxwell time)
dc is :

d c ¼ R

E� ð18Þ

and the maximum thermal stress at the surface is:

ca ¼ E�
KvT ð19Þ

Eq. 17 has the solution:

c ¼ c 0e3t=dc3ca e3z
0 gdc

1þ g
2
d
2
c

½cosðg t3z0Þ þ gdc sinðg t3z0Þ
 ð20Þ

where c0 is the stress at time t=0. This solution
has the standard form of a visco-elastic solid
under harmonic stress (e.g. [42]). The ¢rst term
on the right is simply a viscous relaxation from
the initial state of stress. The periodic terms are
more interesting. The in-phase term represents the
instantaneous elastic response of the material,
whereas the out-of-phase term re£ects the viscous
response.
We note that the dimensionless frequency gdc

indicates the relative importance of the viscous
and elastic terms. If gdcI1, then the viscous
term dominates, and non-transient stresses are
very small. On the other hand, if gdcE1, then
the behavior is essentially elastic and stresses may
be large.
We will see below that calculated stresses may

exceed the tensile strength of permafrost. Thus,
the application of this model may involve stresses
that are unrealistically high. We will set aside this
complication for now and show in Section 6 that
this simpli¢cation does not lead to a gross over-
prediction of crack depth.

3.2. Crack edge stress intensity factor

We can now substitute our expression for stress

Fig. 2. The contribution to the stress intensity factor from
gravity for pure sand (b=2700 kg m33) and pure ice
(b=900 kg m33). See Eq. 14.
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as a function of depth into Eq. 12 to ¢nd:

Ka ¼ 3
2i
Z

ffiffiffi
b

p
ca

gdc

1þ g
2
d
2
c

Z b

0

e3z
0 ½cosðg t3z0Þ þ gdc sinðg t3z0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

b23z2
p dz ð21Þ

This integral has no analytical solution but can
be integrated numerically, as shown in Fig. 3 for
t= tmax, as de¢ned below. In addition, we can
solve for the end-member case bEzg to ¢nd:

KaW
i

Z

ca

gdc

1þ g
2
d
2
c



ð1þ gdc Þsinðg tÞ þ ð13gdc Þcosðg tÞ

�� 


ð22Þ
Since we are only concerned with the maximum

value of Ka as a function of depth, we can max-
imize the term in the curly brackets with respect
to time. We ¢nd that it is maximized at a time
tmax, where:

tmax ¼
1
g

arctan
1þ gdc

13gdc

� 	
ð23Þ

We then de¢ne a weighting function:

Q ðgdc Þ ¼
gdc

1þ g
2
d
2
c



ð1þ gdc Þsinðg tmaxÞþ

ð13gdc Þcosðg tmaxÞ
�

ð24Þ

Fig. 3. Crack-edge stress intensity factor as a function of crack depth. The solid curve is derived from a numerical integration of
Eq. 21, whereas the dashed curve is the large b approximation of Eq. 26. The dotted curve (largely overlapping the solid curve)
shows the results of a full numerical solution, as discussed in Section 5. To dimensionalize the vertical scale, we multiply by
ca

ffiffiffiffiffiffi
zg

p
Q(gdc ). Notice that K is initially zero at the surface because there is no crack length yet developed to concentrate stresses

at the crack tip. K increases rapidly with depth until K reaches a maximum near the skin depth (b/zgW1), and then decreases
with depth as applied tensile stresses near the crack tip approach zero.

Fig. 4. Weighting function vs. dimensionless frequency. The
dotted and dashed curves represent the maximum amplitude
of the contribution to the weighting function by the in-phase
and out-of-phase stresses, respectively (see Eq. 20). The latter
has the form of the Debye relaxation peak. The solid curve
shows the combined maximum (see Eq. 25); it is not simply
the sum of the other two terms, as the cosine and sine terms
cannot simultaneously contribute their maximum amplitudes.
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which simpli¢es to:

Q ðgdc Þ ¼
gdc

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g

2
d
2
c

p ð25Þ

The behavior of this function is shown in Fig.
4. The maximum value of Ka , then, can be written
as:

Kmax
a

W
i

Z

zgffiffiffi
b

p ca Q ðgdc Þ ð26Þ

We show this approximation along with the full
solution in Fig. 3. In general, we will be con-
cerned with crack depths signi¢cantly greater
than the thermal penetration depth, zg , so the
approximation of Eq. 26 will be appropriate.

3.3. Crack depth

In a simpli¢ed view of fracture mechanics, a
crack will propagate as long as the crack edge
stress intensity factor exceeds some critical value,
Kc, which expresses the ‘toughness’ of the materi-
al. Neglecting the contribution of overburden, Kb

(Fig. 2), the maximum depth of crack propaga-
tion, bmax, can be found from Eq. 26 by substitut-
ing Kc for Ka and rearranging to ¢nd:

bmaxW
i

Z

ca zg
Kc

Q ðgdc Þ

 �2

ð27Þ

Again, it is instructive to examine the end-mem-
ber behavior of this equation. At high dimension-
less frequencies (gdcE1), the material is e¡ec-
tively elastic, and Eq. 27 simpli¢es to:

bmaxWbe ¼
U

g

2i
Z

KvT
Kc

E
13X


 �2
ð28Þ

If gdcI1, the material is e¡ectively viscous,
and:

bmaxWbR ¼ Ug

2i
Z

KvTR
Kc


 �2
ð29Þ

The transition between these two cases occurs
when gdcV1. For both ice and rock, UW1036 m2

s31. If we are concerned with diurnal forcing

on Earth 600 Ma, g=7.97U1035 s31 [35,36].
Young’s modulus, E, and Poisson’s ratio, X, are
approximately 10 GPa and 0.3, respectively (Sec-
tion 4.2). Therefore, the transition from viscous to
elastic behavior occurs when:

R ¼ R c ¼
1
g

E
13X

W1:8U1014 Pa s ð30Þ

These relationships are plotted in Fig. 5. The ¢g-
ure shows that the details of the viscosity are not
likely to be important; if we can constrain the
e¡ective viscosity to be greater than 1.8U1014

Pa s, we will potentially have signi¢cant cracking.
Otherwise, no cracking will develop that is attrib-
utable to this mechanism.

4. Material parameters

4.1. E¡ective viscosity

As shown above, the viscous behavior of per-
mafrost critically a¡ects the potential for crack
formation. Despite its complex lithology, if the
soil is dominated by sand and is cemented by
ice (i.e. contains v 3^4 wt% water [43]), ice grains

Fig. 5. Potential crack depth, b, as a function of frequency,
gdc assuming no overburden (see Eq. 27). The primary axes
correspond to dimensionless quantities. The secondary axes
are dimensional, assuming U=1036 m/s2, g(600 Ma)=
7.97U1035 s31, vT=20 K, Tavg = 243 K, E=10 GPa, X=
0.3, K=2.3U1035 K31, KIC =0.6 MPa. The solid curve rep-
resents the full potential crack depth, whereas the dashed
and dotted curves show the viscous and elastic approxima-
tions, respectively.
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will bear the brunt of any tensile load, and frozen
soil will deform by the same mechanisms that
polycrystalline ice does, albeit at di¡erent rates
[44].
Polycrystalline ice deforms by dislocation creep,

grain boundary sliding, di¡usional £ow, recrystal-
lization and microcracking, where each mecha-
nism can be described by some form of power-
law relation similar to Eq. 7 (e.g. [41,45^49]). At
steady-state stresses of x1 MPa, the creep of
polycrystalline ice is dislocation climb-limited,
independent of grain size, and characterized by
a stress exponent n of 4 (Table 1) ([49], and
references therein). At lower steady-state stresses
(0.16c6 5 MPa) and strain rates (10396 _OO R

6 1036 s31), grain boundary sliding-accommo-
dated basal slip (GBS) is the dominant creep
mechanism [49]. GBS is characterized by a stress
exponent of 1.8 and is strongly grain-size depen-
dent, with A0 =AP0d3p, where d is the grain size in
meters and p=1.4 is the grain size exponent (Ta-
ble 1).
Assuming that ice grains in ice-undersaturated

sand will grow into existing pore spaces and be of
the same length scale as the sand grains them-
selves (0.1^1 mm diameter), either dislocation
creep or GBS could be a viable creep mechanism
for the range of stresses (9 2 MPa), strain rates
(1036 s31), and total strains (V0.01) appropriate
to this study (¢gures 2a and 3a in [4]). Larger ice
grain sizes will tend to favor climb-limited creep.
Both creep mechanisms suggest e¡ective viscos-
ities for pure ice between 1013 and 1015 Pa s for
16c6 2 MPa and 2239T9 258 K (Fig. 6).
Some question remains as to whether steady-

state deformation would ever be achieved in ice
exposed to diurnal load cycles (although grain size
sensitive creep in polycrystalline ice of grain size
B 0.1 mm may reach steady state after strains of

only V0.01). In experiments that consider transi-
ent stresses of 0.1^3.0 MPa, there is not su⁄cient
energy to initiate new dislocations, creep is limited
by drag on existing dislocations, and the stress
exponent is 1.0 (Table 1) [50,51]. We suggest a
scenario in which, during the maximum strain
rate portion of the ¢rst load cycle, dislocation
density increases with increasing stress, and ice
deforms by climb-limited power-law creep (and/
or GBS). After the ¢rst load cycle, if the time
scale of recovery is long compared to the time
scale of loading, the dislocation density will re-
main constant at the density achieved during the
maximum strain-rate portion of the cycle [51].
Cole and Durall [51] found evidence for 7^25%
recovery in sea ice after 1^3 days under no stress
at 268 K. Therefore, in the absence of experimen-
tal data, we estimate that recovery over 11 h at
263^223 K would be negligible.

Fig. 6. E¡ective viscosity of ice deforming by dislocation
climb-limited steady-state creep CLC (solid), grain boundary
sliding-accommodated basal slip-limited steady-state creep
GBS (dashed) and drag-limited transient creep DLC (dotted).
An ice grain size, d, of 0.2 mm is used to represent ¢ne-
grained ice grown in the pore space of a compacted sand.

Table 1
Viscosity parameters of ice

Creep law T9 258 K Ts 258 K

AP0 Q n p AP0 Q n p
[Pa3n s3n mp] [J/mol]

Climb-limited[49] 4.0U10319 6.0U104 4 0 6.0U104 1.8U105 4 0
GBS-limited[49] 6.2U10314 4.9U104 1.8 1.4 4.8U1015 1.9U105 1.8 1.4
Drag-limited[51] 1.7U1032 5.3U104 1 0 1.7U1032 5.3U104 1 0
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We can determine AP0 (which is dependent on
dislocation density, (e.g. [47,51])) for drag-limited
creep in pure ice as follows. The maximum strain
rate at 268 K and 2 MPa should be the same
during the ¢rst load cycle and all subsequent
load cycles. Climb-limited creep at 268 K and
2 MPa yields _OO R =8.1U1037 s31, the maximum
strain rate achieved during the ¢rst load cycle.
In order for _OO R =8.1U1037 s31 to be achieved
by drag-limited creep during subsequent load
cycles, AP0 must be 1.7U1032 Pa31 s31 [51] (Table
1). After the ¢rst load cycle, the e¡ective viscosity
of pure ice deforming by drag-limited creep at 1^2
MPa and 258^223 K ranges from 1013 to 1014 Pa s
(Fig. 6).
Importantly, the inclusion of dispersed coarse

particulates (e.g. sand) in ice likely limits £aw
lengths and terminates glide planes, signi¢cantly
reducing creep rates. Durham et al. [52] observed
that for ice-saturated quartz sand at 223 K, the
e¡ective viscosity increases by two orders of mag-
nitude. Similarly, Hooke et al. [53] found that ice
with 35% ¢ne sand at 263 K deformed at 5% of
the experimental creep rate for pure ice at the
same temperature. Thus, we expect frozen soils
to have minimum e¡ective viscosities on the order
of 1014 to 1016 Pa s.
We see that the range of possible soil viscosities

straddles the critical viscosity for cracking of
1.8U1014 Pa s that was determined analytically
in Section 3. The fact that frozen soil viscosity
lies very close to this transition zone may explain
why Neoproterozoic sand wedges are not ubiqui-
tous but occur in favorable thermal regimes and
soil rheologies.

4.2. Elastic parameters

Measured values of Poisson’s ratio, X, for fro-
zen soils between 250 and 273 K range between
0.12 and 0.45 [54,55]. The absolute value of and
variance in X tend to decrease at lower temper-
atures, in drier regimes, and in coarser soils where
liquid water is less abundant along grain bound-
aries. Although it is likely that smaller X may have
led to larger elastic stresses, we consider a X of 0.3
to give a lower bound to accumulated elastic
stresses.

Gold [56] found that, for ice above 233 K,
Young’s modulus obeys the equation E= (2.339U
1010 Pa)3(6.48U107 Pa K31)T. Coarse-grained
frozen soils with little or no unfrozen water
have E values up to ¢ve times higher than ice,
while ¢ne-grained frozen soils have E values sim-
ilar to ice [54]. We note that the uncertainty in
the value for E is an order of magnitude greater
than the expected variation of E with tempera-
ture. Therefore, we ignore any temperature depen-
dence and adopt E=1010 Pa to give a minimum
estimate of elastic stress build-up in the frozen
soil.

4.3. Thermal expansivity

Hobbs [57] reviewed measurements of the co-
e⁄cient of thermal expansion of ice, K, and found
that for 1509T9 273 K, K= (2.47U1037 K32)
T3(1.17U1035 K31). Most silicate rocks have
thermal expansivities two to ten times lower
than ice; therefore, Mellon [22] considered a lin-
ear mixture of 55% basalt and 45% ice to deduce
the relation K= (1.11U1037 K32)T3(1.42U1036

K31) for frozen soil on Mars. However, compo-
site mixtures often behave very di¡erently than
their individual components (e.g. [58]). Bourbon-
nais and Ladanyi [59] measured K values of
V2.5U1035 K31 for frozen sand in the laborato-
ry, with K decreasing slightly with temperature.
Mackay [60] studied crack widths in areas of ac-
tive ice wedge growth and determined an K for
heterogeneous frozen silt of 20^40U1035 K31,
or about 10 times the values considered by Mellon
[22] and Bourbonnais and Ladanyi [59] and at
least two times greater than any experimentally
derived Kice. We apply a constant K=2.3U1035

K31 as a conservative estimate of the coe⁄cient
of thermal expansion.

4.4. Fracture toughness

The fracture toughness, KIC , of pure ice varies
from 0.05 to 0.15 MPa m1=2 [61,62], while the KIC
of concrete, silica, and most rock is between 0.75
and 1.5 MPa m1=2 [40]. Konrad and Cummings
[63] performed experiments on frozen soils be-
neath asphalt at 268 K which indicated that the

EPSL 6425 4-11-02

A.C. Maloof et al. / Earth and Planetary Science Letters 204 (2002) 1^15 9



fracture toughness of frozen sand increases from
0.04 to 0.70 MPa m1=2 when the weight percent of
ice increases from V3 to V10%. Similar tests
conducted by Li and Yang [64] on silty sand at
263 K showed KIC increasing from 0.13 to 0.83
MPa m1=2 when the weight percent of ice in-
creases from V5 to V7.5%. Within the range
of values listed above, the fracture toughness of
frozen soil decreases with increasing temperature
[64], decreasing load rate [64] and decreasing
grain size of soil particles [63]. When the weight
percent of ice is greater than about 8%, there is
some evidence that KIC begins to decrease as ice
content increases and behaves more like pure ice
[64]. For frozen sand at temperatures B 258 K, we
consider 0.16KIC 6 0.8.

5. Numerical results

5.1. Method

We develop a numerical model to evaluate the
e¡ects of more complicated temperature- and
stress-dependent rheologies. The problem at each
time step is broken into three parts. First, we
calculate the one-dimensional thermal pro¢le,
T(z), at depth intervals vx using Eq. 2. Second,
we calculate the stress, c(z), using Eq. 10. Third,
we integrate Eq. 12 to ¢nd the crack edge stress
intensity factor, K(b), for the full range of crack
lengths, b. The equation for stress is integrated
forward in time from an initially unstressed state
using a fourth-order Runge^Kutta method. We
run the code for long enough to remove the tran-
sients and then output the values of T, c, and K
for the time tmax at which the potential crack
depth is maximized (the exact value of tmax de-
pends on the speci¢c rheology used and is deter-
mined by visual inspection of the results).
This code has been benchmarked against the

analytical results derived earlier for a constant
viscosity, as shown in Fig. 3.

5.2. Results

Fig. 7 shows the results of the numerical experi-
ments (see the ¢gure caption for details). The top

row of graphs (Fig. 7a,b) shows c and K assum-
ing constant viscosities of 1013^1016 Pa s for refer-
ence. These calculations are equivalent to the an-
alytical results derived above.
For the stress- and temperature-dependent

rheologies of the other sub¢gures, we show three
di¡erent rheologies in each pair. The curves
marked ice assume a pure ice rheology as summa-
rized in Table 1. The curves marked soil1 and
soil2 employ viscosities in which A0 is decreased
by a factor of 10 and 100, respectively, to approx-
imate the behavior of sand/ice mixtures (see Sec-
tion 4.1 for discussion).
For the the bottom row (Fig. 7g,h), we assume

a temperature-dependent rheology. Although the
results are very similar to the constant viscosity
case, the temperature dependence of viscosity
tends to amplify stresses above the skin depth
during the cold part of the day and reduce stresses
above the skin depth during the warm part of the
day.
Fig. 7e,f and c,d show the results of stress- and

temperature-dependent calculations, with n=1.8
and 4, respectively. In these cases, particularly
with n=4, the stress dependence of viscosity
strongly limits the accumulated stress near the
surface and changes tmax. The shape of the K(b)
curve is more complicated than in the Newtonian
cases; see the following section for more discus-
sion of this behavior.
In all cases, we predict that the sand/ice mix-

tures will exhibit cracks of depths x 0.5 m.

6. Discussion

The key insight here is that the depth to which
a fracture propagates in permafrost depends more
on the material properties of the ground than on
the penetration depth of surface temperature
waves. For example, consider a cold event that
reaches a depth zg and develops a stressed layer
of thickness zg . If the ground below is cold and
brittle, cracks will initiate in the stressed layer and
propagate to depths, b, many times the thickness
of zg . However, if conditions are similar to those
found in high latitudes today, where ground tem-
peratures increase with depth during the winter as
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Fig. 7. Numerical calculations of stress (a,c,e,g) and intensity factor (b,d,f,h) distribution with depth for various viscosity laws ap-
propriate for ice and frozen soil (see text). (a,b) are calculated assuming linear viscosity, (c,d) are calculated assuming climb-lim-
ited creep, (e,f) are calculated assuming GBS-limited creep with 0.2 mm diameter ice grains, and (g,h) are calculated assuming
drag-limited creep. In (b,d,f,h), horizontal dashed lines at K=0.1 and 0.8 MPa m1=2 indicate the possible range of KIC for frozen
soil. Insets in (a,c,e,g) show how the viscosity of soil1 varies with temperature and stress (viscosity parameters taken from Table
1). All calculations assume U=1036 m/s2, g(600 Ma)= 7.97U1035 s31, vT=20 K, Tavg = 243 K, E=10 GPa, X=0.3,
K=2.3U1035 K31, bice = 900 kg m33 and bsoil = 2500 kg m33.
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a memory function of the previous summer’s
warmth [65], cracks initiated within the stressed
layer will be arrested in the warmer, more viscous
ground below. Therefore, high-latitude Quater-
nary sand/ice wedges often form on the same
length scale as the di¡usion of cold events
through the ground because the un-cooled ground
below is not brittle. Conversely, during a snowball
Earth interval, the ground is dry and cold year-
round. The large stresses associated with diurnal
temperature variations, though only felt in the
upper 16 cm of the ground, are more than enough
to propagate fractures x0.5 m deep through the
brittle ground below.
The two largest unknowns that could lead to

signi¢cant errors in our calculations are the rheol-
ogy and the fracture toughness of frozen ground.
We saw in Section 3 that the details of viscous
creep were not crucially important and that as
long as we could constrain the e¡ective viscosity
of frozen soil to be v 1.8U1014 Pa s, cracks
would form. As observed and predicted e¡ective
viscosities for ice [41,66] and frozen sand
[52,53,67,68] appear to range between 1013 and
1016 Pa s, it is likely that some permafrost is vul-
nerable to cracking while some is not.
The second important unknown in these calcu-

lations is the fracture toughness, KIC , which varies
across almost an order of magnitude depending
on ice content and soil grain size, and to a lesser
extent on temperature and load rate. However,
considering the full range of possible KIC in fro-
zen ground, we conclude that when cracks occur,
they can reach depths of at least 50 cm.
As we stated in Section 3.1, the stresses in the

soil near the surface will never exceed the tensile
strength of the soil ; when this stress is reached,
the soil will fracture and a crack will initiate. One
could make the argument, therefore, that ca in
Eq. 26 should be 9 2 MPa, the maximum tensile
strength of frozen ground [54,55,65]. This state-
ment is true if we model only the strain energy
available to the crack during initial rupture. How-
ever, if the ground continues to contract thermally
after initial rupture, the stresses that would have
been near the surface directly above the crack of
depth b are either (1) focused at depth in the
crack tip leading to further crack propagation;

and/or (2) used to form new cracks at a horizontal
distance less than the distance, y, at which stress
relief owing to crack formation is 6 10^20%
(yV2b ; [65,69]). At horizontal distances greater
than 2b, we consider the ground to be part of a
di¡erent micro-system, which does not experience
signi¢cant stress relief from the propagation of
the initial crack.
The most accurate model of crack propagation

would allow neighboring cracks at y6 2b to form
and grow. A variety of experimental and theoret-
ical investigations show that, as parallel thermal
contraction cracks grow, they will tend to interact
with each other unstably so that some cracks stop
growing while others extend at a faster rate [69^
71]. In a material with no initial £aws, neighbor-
ing micro-cracks can pirate as much as 25% of the
available strain energy, although the system is still
characterized by a collection of long cracks sepa-
rated horizontally by a distance yV2b [70]. How-
ever, in a material that contains even a very small
number of imperfections, little or no strain energy
will be spent opening and closing minor cracks
and nearly all of the available strain energy will
be used to propagate long cracks to depths b at a
distance V2b apart [69^71]. Because permafrost

Fig. 8. Intensity factor versus depth calculated (solid) using
Eq. 13 for a stress �cc =2 MPa applied uniformly from z=0
to z= zg ; (dashed) using Eq. 12 for a variable stress (Eq. 20)
and linear viscosity R=1015 Pa s; and (dotted) stress- and
temperature-dependent viscosity for soil1 (see Fig. 7d). Note
that the plot begins at the skin depth zg =0.16 m. Horizon-
tal dashed lines at K=0.1 and 0.8 MPa m1=2 indicate the
possible range of KIC for frozen soil.
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is an imperfect material with abundant £aws,
most of the strain energy available during a cycle
of cooling and thermal contraction will be used to
propagate a single fracture. We model pre-crack
stress and ignore the tensile strength of the mate-
rial, allowing the stresses to exceed 2 MPa so that
the total available strain energy will be used to
extend a single crack.
It is beyond the scope of this paper to model

interactions between cracks. Instead, we present
lower and upper bounds on potential crack depth
(Fig. 8). Minimum crack depths will be achieved
if we assume a uniform stress of 2 MPa through
the skin depth. We see that when the e¡ects of
stress-dependent rheology are considered, stresses
exceeding 2 MPa in the surface layers will over-
predict the degree of viscous relaxation, thus lead-
ing to stress intensity values nearly identical to
those of the uniform 2 MPa stress example. For
non-stress-dependent rheologies with viscosities
v 1.8U1014 Pa s, allowing stresses in the upper
centimeters of soil to exceed the tensile strength
of permafrost by a factor of 2^5 predicts cracks
one to four times longer than the uniform 2 MPa
case, thus placing an upper bound on crack depth
(Fig. 8). Crack depths likely approach this upper
bound when few if any minor cracks grow around
the dominant rupture after initial failure. To
quantify how much strain energy is squandered
on microcracking around the major fracture, de-
tailed experiments like those of Mackay and Burn
[18] must be conducted to observe exactly how
cracks form and grow in permafrost during the
passage of a cold wave.
At least two potential tests of our model for

thermal contraction cracking could be conducted.
First and simplest, cold room experiments on
blocks of frozen sand subject to rapid cyclic tem-
perature variations could determine potential
crack depths experimentally. Second, high-resolu-
tion imaging of moderate altitude plateaus on the
Martian equator, where diurnal temperature var-
iations exceed 60‡C, temperatures rarely rise
above 5‡C [37], and ground ice is prevalent [23],
should reveal active ground cracking. However,
equatorial Martian sand wedges may prove very
di⁄cult to image, as low solar-incidence angles at
the equator hinder the imaging of low-relief land

features with conventional passive recorders. Fur-
thermore, it would have to be demonstrated that
the equatorial wedges were very recent and not
formed during a Martian high-obliquity episode
[72].

7. Conclusions

To investigate whether stresses associated with
the diurnal temperature cycle during a snow-
ball Earth event could have been responsible for
sand-wedge growth, we present a quantitative
analysis of the process of crack formation in sol-
ids subject to periodic temperature variations. We
derive analytical expressions relating the New-
tonian viscosity to the potential crack depth, con-
cluding that cracks will form only in frozen soils
with viscosities greater than 1014 Pa s. We also
show numerical calculations of crack growth in
frozen soils with more complicated material prop-
erties, such as a stress- and temperature-depen-
dent rheology, and conclude that a linearized
viscosity law leads to accurate predictions of
crack depth. We also conclude that during cyclic
loading, if the time scale of recovery is long com-
pared to the time scale of loading, dislocation
density will likely remain constant and the non-
linear process of dislocation multiplication will be
inactive, leaving a linear stress^strain rate rela-
tionship. Therefore, a linear viscosity law may
be the most accurate characterization of frozen
soil behavior exposed to a diurnal temperature
forcing.
Even when using conservative estimates for all

material parameters, we ¢nd that e¡ective viscos-
ities for frozen ground likely vary from 1014 to
1016 Pa s. We expect that temperature regimes
and soil rheologies favorable for crack formation
would have been common at the equator during a
snowball Earth episode. Furthermore, we ¢nd
that temperature variations on the order of tens
of degrees over 11^24 h periods yield cracks one-
half to several meters deep, similar to the length
scale of sand wedges seen in the geologic record.
High degrees of seasonality would not have been
necessary to form sand-wedge polygons at the
equator during a snowball Earth.
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